effects of furnace and inlet gas mixture temperature on growing carbon nanotube in a cvd reactor

Authors
abstract

carbon nanotubes (cnts), nowadays, are one of the important nanomaterials that can be produce with different methods such as chemical vapor deposition (cvd). growing of cnts via cvd method can be influenced by several operating parameters that can affect their quality and quantity. in this article, the effects of inlet gas mixture temperature on cnt’s local growth rate, total production, and length uniformity are numerically studied in two distinct growth regimes, mass transfer controlled regime and surface reaction controlled regime, separately. also, the effects of the interaction of inlet gas mixture temperature with furnace temperature on cnt growth are investigated.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Effects of Furnace and Inlet Gas Mixture Temperature on Growing Carbon Nanotube in a CVD Reactor

Carbon nanotubes (CNTs), nowadays, are one of the important nanomaterials that can be produce with different methods such as chemical vapor deposition (CVD). Growing of CNTs via CVD method can be influenced by several operating parameters that can affect their quality and quantity. In this article, the effects of inlet gas mixture temperature on CNT’s local growth rate, total production, and le...

full text

Effects of Furnace and Inlet Gas Mixture Temperature on Growing Carbon Nanotube in a CVD Reactor

Carbon nanotubes (CNTs), nowadays, are one of the important nanomaterials that can be produce with different methods such as chemical vapor deposition (CVD). Growing of CNTs via CVD method can be influenced by several operating parameters that can affect their quality and quantity. In this article, the effects of inlet gas mixture temperature on CNT’s local growth rate, total production, and le...

full text

Numerical Analysis of Inlet Gas-Mixture Flow Rate Effects on Carbon Nanotube Growth Rate

The growth rate and uniformity of Carbon Nano Tubes (CNTs) based on Chemical Vapor Deposition (CVD) technique is investigated by using a numerical model. In this reactor, inlet gas mixture, including xylene as carbon source and mixture of argon and hydrogen as  carrier gas enters into a horizontal CVD reactor at atmospheric pressure. Based on the gas phase and surface reactions, released carbon...

full text

Numerical Study of Furnace Temperature and Inlet Hydrocarbon Concentration Effect on Carbon Nanotube Growth Rate

Chemical Vapor Deposition (CVD) is one of the most important methods for producing Carbon Nanotubes (CNTs). In this research, a numerical model, based on finite volume method, is investigated. The applied method solves the conservation of mass, momentum, energy and species transport equations with aid of ideal gas law. Using this model, the growth rate and thickness uniformity of produced CNTs,...

full text

Numerical Study of Furnace Temperature and Inlet Hydrocarbon Concentration Effect on Carbon Nanotube Growth Rate

Chemical Vapor Deposition (CVD) is one of the most important methods for producing Carbon Nanotubes (CNTs). In this research, a numerical model, based on finite volume method, is investigated. The applied method solves the conservation of mass, momentum, energy and species transport equations with aid of ideal gas law. Using this model, the growth rate and thickness uniformity of produced CNTs,...

full text

numerical analysis of inlet gas-mixture flow rate effects on carbon nanotube growth rate

the growth rate and uniformity of carbon nano tubes (cnts) based on chemical vapor deposition (cvd) technique is investigated by using a numerical model. in this reactor, inlet gas mixture, including xylene as carbon source and mixture of argon and hydrogen as  carrier gas enters into a horizontal cvd reactor at atmospheric pressure. based on the gas phase and surface reactions, released carbon...

full text

My Resources

Save resource for easier access later


Journal title:
international journal of bio-inorganic hybrid nanomaterials

جلد ۳، شماره ۳، صفحات ۱۸۵-۱۹۲

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023